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ABSTRACT
The best language models are trained on more than 1 trillion
tokens of English language text. Most languages, however, do
not have such large training datasets available. We investigate
an extremely data-limited regime where only 80,000 tokens
of text are available in the form of a high-quality Latin text-
book. We also introduce a new dataset for evaluating Latin
models that contains over 5,000 high-quality human anno-
tated questions and answers that were originally designed to
assess human learning. We find that the small, high-quality
textbook data is sufficient to improve the performance of
language models on this new dataset.
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1 INTRODUCTION
Large Language Models don’t have a strong understanding of
under-represented languages due to the lack of requisite train-
ing data[12]. Previous efforts increased model performance on
low-resource languages by using news[15], synthetic data[2],
classical texts[3], and multilingual common crawl data[13].
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Figure 1: Our textbook training method equips LLMs to learn
languages with minimal amounts of data. We compare our
training process with conventional LLM fine-tuning and human
learning.

Our contribution introduces the idea of textbook training
for low-resource languages, where a small amount of high-
quality text from a textbook is used in fine-tuning to improve
coherency. Textbook data has been used to train an LLM
from scratch[5], however, it had 80x more data compared to
our singular textbook.

Our method of textbook training is inspired by the idea of
natural learning[1], a form of example-based human learning
popular with language educators. We aim to mirror human
cognitive efforts to lower the computational cost of training.
Figure 1 illustrates these concepts.

We fine-tune the LLaMA[19] and Davinci[4] models on a
textbook to generate Latin-Davinci and Latin-LLaMA. Latin
is an ideal candidate for this experiment due to its under-
representation in common training datasets, as well as the
high caliber of available textbooks. LLaMA has limited Latin
exposure, primarily from English Wikipedia, while Davinci
has slightly more.

OpenAI has published results of its models on several AP
tests[16], however, other researchers have raised concerns
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about the results due to possible data contamination[9, 11,
14]. Thus, our end goal is for Latin-Davinci and Latin-LLaMA
(Figure 1) to get a 5 on the AP Latin test.

2 EXPERIMENTS
We fine-tune Davinci and LLaMA on all 35 chapters of the
Lingua Latina per se Illustrata textbook[6, 7], which we
predict will enhance Latin performance efficiently with its
focused content on grammar and vocabulary. This textbook
follows a natural learning style, as its chapters are written
solely in Latin, as a narrative. Our fine-tuning dataset size is
substantially smaller than conventional, as seen in the table
below.

Model Type Model Data Size (tokens)
Base LLaMA-30B/60B[19] 1,400,000,000,000
Base LLaMA-7B/13B[19] 1,000,000,000,000
Base GPT-3[4] 300,000,000,000
Base phi-1[5] 7,000,000,000
Base Latin-BERT[3] 642,700,000
Fine-tuned Alpaca[18] 3,800,000
Fine-tuned Latin-Davinci/LLaMA 80,017

To evaluate the models’ performance, we took questions
from the quizzes at the end of each chapter(pensums), total-
ing 5,951 cloze-style questions. There is no overlap between
the pre-training of LLaMA and Davinci and the testing data,
as the quiz answers are neither in the textbook nor available
online. Pensum style A asks the student to fill in a missing
word ending, while pensum style B asks the student to fill
in an entire word. Below shows a pensum A task, where the
missing word ending, colored in red, needs to be correctly
identified.

Q: Iūlius pater Mārc~ est.

To score the model, for a given question we gave it multiple
versions of the quiz sentence with four different replacements
for a missing word or word ending. We identified the model’s
choice by whichever sentence had the lowest perplexity[10],
an evaluation strategy also used in an LLM benchmark on
Mandarin Chinese[17].

Eval Sentences Davinci LLaMA-13B

Base Fine Base Fine

Iūlius pater Mārcus est. 12.54 2.96 121.15 11.86
Iūlius pater Mārcum est. 22.63 2.81 217.30 13.39
Iūlius pater Mārcī* est. 14.91 1.44 198.13 7.46
Iūlius pater Mārcōrum est. 16.35 2.88 123.84 10.46

The table above illustrates how the fine-tuned models identify
the correct version of Marcus; in Latin there are many forms
of nouns. The base models’ failure in this specific example

could be attributed to how in English, the most common
borrowed word ending from Latin is the nominative case (the
-us ending).

Latin’s macron system, the horizontal lines above some
vowels, can alter the meaning of a sentence. Experiments
fine-tuning on chapters 1 to 5 with and without macrons
yielded similar results. To save compute we used the text
without macrons, as they increase token count.

Figure 2: Fine-tuning Davinci and LLaMA on chapters 1-35
increases performance across multiple quiz styles. Model per-
formance is variable across chapters due to differing content.

Figure 3: Fine-tuning models with textbook training outper-
forms the original models across all quiz styles and 35 chapters.

As shown in Figures 2 and 3, Latin-Davinci and Latin-
LLaMA outperform the base models. For LLaMA fine-tuning,
we used LoRA[8], showing that computationally efficient
methods of fine-tuning can improve language performance.

We limited the number of answers to four. It significantly
decreased the cost and time of the evaluation, reducing Ope-
nAI API costs by more than 70x. The later chapters should
have lower performance, as increasingly complex Latin gram-
mar concepts are being tested. However, the multiple choice
nature of the evaluation along with more context clues leads
to these later chapters being inflated in accuracy. As our pre-
liminary results are promising, we plan to implement other
evaluation techniques in order to more accurately address
the free-response nature of these questions.
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